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This Presentation
• Introduce HALE-UAV
• A Vision of Future – Sensor Craft Importance
• Joined-Wing Configs.
• 2-D Laminar Aerofoils
• Aspects of 3-D Design, different Swept Tips
• LE Suction Control, Elliptic loadings, Neutral Stab.
• CFD Checks
• Inverse 3-D Design Capabilities
• Intake Design – Preliminary Work
• Avenues for Further Work



Typical HALE  Global Hawk

span: 116 ft, length 44 ft
light composites, aluminium fuselage, COST $10M

Range 12000 nm, AUW 25,600 lb ,  range up to 2000nm at 65000ft

flies to an area 1200 miles and remains on station 24 hrs

cloud penetrating synthetic aperture radar /
ground moving target indicator, electro-optical and infra-red sensors

image an area 40,000 square miles (State of Illinois) in 24 hours
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SENSOR-CRAFT WORLD





Other joined-wing possibilities



3000 nm

         Loiter
   40-80 hr 65 k ft
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Mission profile and requirements

Mission Segments
                                

1.  Engine Start & Warm-up
2.  Taxi
3.  Takeoff
4.  Climb & Accelerate to Cruise
5.  Cruise out 3000
6.  Loiter
7.  Return Cruise
8.  Descend 
9.  Loiter at Sea Level 
10.  Landing, Taxi, Shutdown

                      W/S range of interest:    30 - 60

T/W range of interest:   .30 -.50

Cruise Radius:  3000 nm

             Loiter:   65 Kft for 40 - 80 hr (at 3000 nm range)

          Payload:   4000 lb Field Length:   5350 ft over 50 ft Obstacle (SLS)

           Control:   20 kt cross-wind on takeoff and landing

Flight duration 4-6 days
Implies a Wide Flight Envelope
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X - Band Antenna

 Reference Configuration - Antenna Integration

Design Driver:  Aero-Performance
                           of  Very Thick Airfoils

2-D  Driver
High t/c
High L/D
Laminar Flow 50%c
Critical Mach at cruise
Low Re



19.6% t/c, Navier-Stokes Results at Re 1 million, Mach 0.01, Biber & Tilmann



2-D CALCULATIONS, INVISCID, MACH no VARIES from 0.0 to 0.6

t/c 16% uncambered

t/c 16% cambered



t/c 19.6% uncambered

t/c 19.6% cambered

2-D CALCULATIONS, INVISCID, MACH no VARIES from 0.0 to 0.6



SUMMARISING THE AEROFOIL PERFORMANCE,
 LAMINAR FLOW CAPABILITY Uncambered & Cambered



X - Band Antenna

Sized Geometry

(From W/S = 30)   Wing Area (Gross):  2300 sq ft

(From Antenna) Aspect Ratio (Gross):   17.4

AR wet = 5.5

    Span = 200 ft

  Sweep = 35 deg

 Reference Configuration



AT1 FT2FT1

Identical frontal
view
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JOINED WING CONFIGURATIONS



Aerofoil Shapes

AT! CONFIGURATION



AT!, BASIC CHARACTERISTICS, Uncambered Aerofoils
Cp Distributions & Interference Effects On Spanwise Loadings



DESIGNED WING,Super-Critical Type Aerofoil,
Twist & camber

Assume Zero Static Margin (Neutral Stability)
Respective Wing Settings Follow, Use Panel Method



Spanwise Loadings    AoA = 3.25, 4.25, 5.25



Cp Distbns.

AoA = 3.25, 4.25, 5.25



Design AoA + 0 deg Design AoA + 1 deg

EULER CFD    CHECK
Designed Case & Off-Design look for extreme gradients



Design AoA + 3 deg Design AoA + 4 deg

NOTENOTE



Panel, CL = 0.59 Euler,CL = 0.51



Euler, M=0.6, Design AoA  + 0 deg, CL =  0.51, Upper Surface

Mach no



Mach no.

Euler, M=0.6, Design AoA  + 4 deg, CL =  1.08, Upper Surface



POWERFUL INVERSE METHOD, KNOWN Target Pressure Distbn.
“Supplanted” on a GIVEN WING







COMPARING AEROFOIL SECTIONS ON FRONT WING AT START & AFTER 6
CYCLES (WING AND TAIL BOTH MODELLED)



Laminar AT1



CL & Cm
Reference &
Control due to 0.5
deg setting angle
 changes

reference



SPANWISE LOADINGS AT Mach 0.6, CL=0.72, 0.9,1.07,1.25.1.43,1.6



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=0.9

uncambered

cambered

CL=0.72



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=1.07 CL=1.25

uncambered

cambered



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=1.43 CL=1.6

uncambered

cambered

Possibly Exceeding
 Laminar limits at
 Wing Junction



SPANWISE LOADINGS AT Mach 0.15, CL=0.63, 0.74,0.94,1.1.1.26,1.41



Cp Distbns. AT Mach 0.15, CL=0.63, 0.74,0.94,1.1.1.26,1.41



Forward Swept Tip FT1 Laminar



SPANWISE LOADINGS AT Mach 0.6, CL=0.72, 0.9,1.07,1.24.1.43,1.6



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=0.9 CL=1.07



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=1.24 CL=1.43



COMPARING UNCAMBERED & DESIGNED CONFIGS AT 
SAME CL VALUES

CL=1.6

Possibly Exceeding
 Laminar limits at
 Wing Junction



Twin Fuselage intakes

Propulsion Considerations



Central Fuselage intake



COMPLEXITY

ORDER OF COMPLEXITY



UNSCARFED INTAKES

Increasing MFR



UNSCRAFED, SCARFED & 3-D STEALTHY INTAKES

0 alpha

High alpha



Zero speed



Central Intake Integration
& Modelling

magnified



Cp

ML

Central, MEF=0.6, M=0.5



Contraction Ratio CR

Mach No



Intakes, Propulsion

• Shown a Preliminary set of Results
• Sizing is the first Concern
• Altitude of Operation !
• Off-Design
• Suitable Power-plants !
• Possibly Two needed
• Work Continues ……
• Experimental Work needed



Configuration & Structure

• Configuration / Layout
• What Light Materials
• One or two Fuselage
• Are such high AR craft feasible, structure
• Aero-elastic tailoring
• Manufacturing Constraints



Aerodynamics / Flow Control /
Control

• Viscous Effects: Laminar Flow Extent
• Spanwise press. gradients
• Effect of Sweep, lower sweep Config. !
• Field performance
• Off-design, side-slip
• Controls location, pitch, directional & lateral
• Off-design
• Flow control, what & where!



Experimental work

• Difficulty in modelling large AR Configs
• Reynolds Number Considerations
• Laminar flow in WT !
• Half models
• Control effects not representative of full-scale
• A Radio Control Free-Flight Model !
• Propulsion Integration Considerations



Concluding Remarks
• Introduced HALE - UAV
• A Vision of Future – Sensor Craft Importance
• Joined-Wing Configs.
• 2-D Laminar Aerofoils
• Different Type of Swept-Tips in 3-D
• Aspects of 3-D Design
• LE Suction Control, Elliptic loadings, Neutral Stab.
• CFD Checks – Forward-Swept Root area
• Inverse Design Capabilities
• Intake Design – Preliminary Work
• Avenues for Further Work



*** Thank You for Listening ***

So I hope, enough has been shown to
interest and inform you in the fast

moving field of Sensor-Craft
PLENTY of Further Work!

************
Shall we try Comments and Questions?


